AUTHORED BY
Andrew Cross
DATE
08/20/2015
CATEGORY
WORD COUNT
829
REV
1
REFERENCE IMAGE
NOTES
  1. Ultimately, this design creates more anxiety than it's worth.
  2. The company that sells the CHUG no longer sells the files to print it at home.
SOCIAL REACH

A year ago, a couple of enterprising designers from Vancouver ran a Kickstarter campaign that ultimately raised $80,000+ to manufacture CLUG – a tiny wall-mounted clip meant to act as a bicycle rack, of sorts. I missed out on the active campaign, but one really cool aspect to the Kickstarter was that backers ($9 tier, I believe) would be granted the digital .stl files that would allow them to use their own 3D printers and print the CLUG themselves at home! How cool!

Unfortunately, after the initial release of the digital file to the early backers, once the product had been (exceedingly) funded/manufactured/listed for sale on CLUG’s website, the designers decided they wouldn’t make their digital files available for purchase. Instead, they claimed that they were “hard at work getting the 3D Files ready for sale“. To the best of my knowledge, it’s been an entire year and there’s absolutely no indication, at this point, that they intend to sell these files. Joseph Larson realized this nearly 6 months ahead of me, and took matters into his own hands with a blog post titled “How I stole the Clug and why I don’t feel bad about it“.

Feeling inspired by Joe’s assertiveness, I decided to do a little reverse-engineering of my own. I started out by researching the product, finding as many pictures and videos of the CLUG as I could. Humorously, my best resource ended up being on the CLUG website itself. Although they’d decided not to sell their digital files, they left their 3D printing instructions on their website! Furthermore, they actually included (full scale) screenshots of the individual components being prepared to print with Makerbot Desktop software.

Clug_Makerbot_Software_screenshot

Not only were the screenshots tremendous feature references, they also allowed me to scale my design appropriately. One neat feature of the Makerbot Desktop software is that the grid is uses to represent the 3D printer’s print-bed is rendered at 1 cm per side. Some of you are probably already ahead of me, but from these photos, I was able to calculate both components’ footprints (42mm x 38mm on the larger piece), as well as their wall thicknesses (2 mm).

01-import-1

01-import-2

02-Makerware

The next screenshot tells me that the software is set to slice the model at a layer height of 0.30 mm, and the screenshot after that shows me that there are 101 layers total (I rounded my design to 30mm tall)!

03-settings-1

04-preview

Without boring you through the step-by-step details of the CAD work, I created both components as independent solid bodies in the same part file so that I could build them up parametrically. Taking advantage of symmetry, I started with the outside shell and treated it like sheetmetal.

buildup-1

I then mirrored the piece, added in some structural support, and included the holes that attach the bracket to the wall.

buildup-2

Digging into the second component, I added several reference planes and geometrical points that would facilitate me creating the two lofts shown below.

buildup-3

After doing some feature mirroring, and hiding the first component, I added some more material along the midline of the component to give it some structural strength.

buildup-4

Lastly, I added the features that would allow the inner component to “clip” to the outer piece.

buildup-5

The only thing left to do was to actually print the pieces!

clug1

clug2

clug3

Wait, no. I lied. The last thing to do was mount the reverse-engineered CLUG on the wall and attach my bike!

clug4

clug5

My original intent with this project was to release the stl’s out into the world, but after using my modified CLUG for around two weeks, I’ve decided to table that thought. My bike hasn’t actually fallen yet, but my version of the CLUG doesn’t have quite as much clamping action as I’d like to see. I’m always nervous that, at any moment, my bike could come crashing down. I’ve considered going back and revising what I have, but at the end of the day I’ve decided that I’m just really not a fan of this design. It’s discreet, sure, but the easy pop-in/pop-out concept just isn’t worth what it costs me in anxiety.

I think I’ll probably come up with my own 3D-printable wall-mounted bike rack in the very near future, so stay tuned!



Update (4/17/17): Perhaps against my better judgement, I’ve decided to go ahead and share the Clug’s reverse engineered STLs here on agcross.com. No plans to throw them on Thingiverse for the time being. I need to emphasize that, if you choose to download, print, and use these, you are doing so at your own risk. I am not at all responsible for any damage incurred to person or property following the use of these STLs. I should also be explicitly clear that I don’t trust this open clamping design whatsoever. That being said, if you fail to heed these warnings, let me know how it turns out if you so choose to print the hacked Clug!

Profile picture of Andrew standing at the Southern-most point in the United States.
Andrew Cross

Andrew is currently a university research engineer with a post-grad degree in mechanical engineering. He enjoys good food, motivated people, and road biking. He has still not completely come to terms with the fact he will never play center field for the Kansas City Royals.

  • Tommy Larsen

    I would really like your STL file 🙂

    • Andrew Cross

      Well, I finally caved. I’ve added links to the STLs at the bottom of the post.

      • Tommy Larsen

        Thanks, will print and mount in the weekend, I’m not so worried if my MTB falls off the wall in the garage 😉
        I’ll post my experience!

        • Andrew Cross

          I should also note that the inner shell STL I created was specifically sized for my road bike tires. If you have thicker tires, there’s a very real chance they won’t fit in this clug. You’d have to follow my guide and create your own inner shell to fit the larger tire diameter :/

        • Andrew Cross

          I should also note that the inner shell STL I created was specifically sized for my road bike tires. If you have thicker tires, there’s a very real chance they won’t fit in this clug. You’d have to follow my guide and create your own inner shell to fit the larger tire diameter :/

  • Horacio Pizzanelli

    any chance you are willing to share your file?

    • Andrew Cross

      I’ve avoided sharing my STLs this long because I didn’t want to give anyone the impression I was liable for the design if it ultimately failed to hold the bike, but it’s worked well enough for me this long – I might as well. I’ll see what I can do!

      • Horacio Pizzanelli

        Thanks so much. I really appreciate it

        • Andrew Cross

          Well, I finally caved. I’ve added links to the STLs at the bottom of the post. Let me know if you decide to print these, and how they turn out!

      • Tommy Larsen

        You could send me the files via email, I won’t bugger you if my bikes falls down 😉

  • Michael Ramke

    Hi Andrew,

    would you be so kind to publish a wider version of your clug version to fit hybrid or MTB tires?
    And I don’t belive that there will be any issues with your design. Probably it’s a good idea to print it in PETG or better Nylon filament which is much stronger then PLA.